Alterations of medial preoptic area neurons following pregnancy and pregnancy-like steroidal treatment in the rat.
نویسندگان
چکیده
There is a marked increase in the maternal behavior displayed by a female rat following pregnancy-due primarily to exposure to the gonadal hormones progesterone and estradiol (P and E(2), respectively). We examined Golgi-Cox silver-stained, Vibratome-sectioned neurons visualized and traced using computerized microscopy and image analysis. In Part One, we examined the hormonal-neural concomitants in the medial preoptic area (mPOA), an area of the brain that regulates maternal behavior, by comparing cell body size (area in microm(2); also referred to as soma and perikaryon) in the mPOA and cortex of five groups (n = 4-6/group) of ovariectomized (OVX-minus), diestrous, sequential P and E(2)-treated (P+E(2)), late-pregnant, and lactating rats; for Part Two, we examined a subset of mPOA neurons, which were traced in their entirety, from these same subjects. In Part One, whereas there was no difference between OVX-minus and diestrous females, both had smaller somal areas compared to OVX+P+E(2)-treated and late-pregnant females. The area of the soma returned to diestrous/OVX-minus levels in the lactating females. We found no change among the five groups in area of cell body in cortical neurons, which generally lack steroid receptors. In Part Two, which included a more detailed morphometric analysis of mPOA neurons, we examined several additional measures of dendritic structure, including number of proximal dendritic branches (the largest proximal dendrite was defined as the one with the largest diameter leaving the soma); cumulative length of the largest proximal dendrite; area of the cell body; number of basal dendrites; cumulative basal dendritic length; number of basal dendritic branches; and branch-point (distance from cell body to first branch of largest proximal dendrite). Again, we found similar effects on cell body size as in Part One, together with effects on number of basal dendritic branches and cumulative basal dendritic length in pregnant and P+E(2)-treated groups compared to OVX, diestrous, and lactating. An increase in somal area denotes increased cellular activity, and stimulatory effects on additional neuronal variables represents modifications in information processing capacity. Pregnancy and its attendant hormonal exposure, therefore, may stimulate neurons in the mPOA, which then contribute (in an as yet undetermined manner) to the display of maternal behavior. During the postpartum lactational period, when cues from pups primarily maintain maternal attention, the neuronal soma appears to return to a pre-pregnancy, non-hormonally dependent state, whereas other aspects of the dendrite remain altered. Collectively, these data demonstrate a striking plasticity in the brains of females that may be reflected in modifications in behavior.
منابع مشابه
The Effect of Noise Pollution Exposure during Pregnancy on Long Term Potentiation Induction in Pyramidal Neurons of Hippocampus CA1 area in Male Rat Offsprings
Background: It is believed that cognitive processing is easily disturbed by incompatible environmental stimulations. Many studies have shown that prenatal stress affects fetal brain development. The aim of this study was to evaluate the effect of noise pollution exposure during conception period on neural activity of hippocampus CA1 area in male rat offspring. Methods: Four groups of rats inclu...
متن کاملMorphometrical Study of Polysialylated Neural Cell Adhesion Molecule Positive Cells in Rat Pups Hippocampus Following Induction of Seizure during Pregnancy
Background:The polysialylated neural cell adhesion molecule (PSA-NCAM) is expressed in developing brain. Fetal brain damage is caused by different conditions such as seizure and hypoxia. The present study was designed to investigate the effect of maternal seizures on the number of PSA-NCAM positive cells in pup's hippocampus. Methods: Female Wistar rats were divided into four groups: (a) kindle...
متن کاملIntermediary role of kisspeptin in the stimulation of gonadotropin-releasing hormone neurons by estrogen in the preoptic area of sheep brain
Introduction: The role of estrogen in the stimulation of gonadotropin-releasing hormone (GnRH) neurons is clear. These neurons do not express estrogen alpha receptors, so other mediator neurons should be present to transmit the positive feedback effect of estrogen to the GnRH neurons. Kisspeptin neurons have an important role in the stimulation of GnRH neurons, so they can be the mediator of...
متن کاملTestosterone regulates substance P within neurons of the medial nucleus of the amygdala, the bed nucleus of the stria terminalis and the medial preoptic area of the male golden hamster.
The medial nucleus of the amygdala, bed nucleus of the stria terminalis, and medial preoptic area appear to mediate steroidal regulation of mating behavior in male rodents. The mechanism of action has not been determined. One way testosterone could enhance neuronal function is by increasing neurotransmitter levels, thus altering neuronal transmission. To assess this hypothesis, we examined the ...
متن کاملElectron microscopic cytochemistry of catecholaminergic innervation of LHRH neurons in the medial preoptic area of the rat.
The synaptic interactions between catecholaminergic terminals and luteinizing hormone releasing hormone (LHRH)-containing neurons in the medial preoptic area of the rat was studied by electron microscopy using LHRH immunocytochemistry combined with 5-hydroxydopamine labeling or autoradiography after injection of 3H-dopamine or 3H-noradrenaline in the same tissue section. Axon terminals labeled ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain research bulletin
دوره 55 6 شماره
صفحات -
تاریخ انتشار 2001